6,129 research outputs found

    Giant capacitance of a plane capacitor with a two-dimensional electron gas in a magnetic field

    Full text link
    If a clean two-dimensional electron gas (2DEG) with small concentration nn comprises one (or both) electrodes of a plane capacitor, the resulting capacitance CC can be larger than the "geometric capacitance" CgC_g determined by the physical separation dd between electrodes. A recent paper [1] argued that when the effective Bohr radius aBa_B of the 2DEG satisfies aB<<da_B << d, one can achieve C>>CgC >> C_g at low concentration nd2<<1nd^2 << 1. Here we show that even for devices with aB>da_B > d, including graphene, for which aBa_B is effectively infinite, one also arrives at C>>CgC >> C_g at low electron concentration if there is a strong perpendicular magnetic field.Comment: 6 pages, 5 figures; updated discussion about bilayer systems; added discussion of fractional quantum Hall state

    First L-band Interferometric Observations of a Young Stellar Object: Probing the Circumstellar Environment of MWC 419

    Get PDF
    We present spatially-resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85-m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 microns wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power-law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br gamma emission line. The measured disk size at and around Br gamma suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.Comment: Accepted for publication in Ap

    Holocene Biogeochemical and Pollen History of a Lake Erie, Ohio, Coastal Wetland

    Get PDF
    Author Institution: Department of Biological and Environmental Sciences, Morehead State University and Byrd Polar Research Center, The Ohio State UniversityA five meter sediment core was taken from Old Woman Creek National Estuarine Research Reserve and State Natural Area and Preserve along the western basin of Lake Erie, U.S.A., to determine the historical biogeochemistry of the wetland. Analysis of pollen and sediment chemistry revealed that the area has remained a wetland since ca. 5,500 yr BP, despite changing lake levels. Pollen stratigraphy indicates a distinctive local succession, which has been divided into three zones. Sediments from sometime after glaciation to 5,500 yr BP were characterized by low concentrations of herb pollen; the next zone showed an establishment of hardwood forest vegetation. The modern local vegetation developed after deforestation (about 200 years ago), when sedimentation increased an order of magnitude, phosphorus deposition increased, and the ecosystem changed from a macrophyte dominated wetland to a plankton dominated marsh. After European settlement, the wetland retained its ability to act as a sink and biotic transformer of bioavailable phosphorus; however, abiotic processes seemed to be more important than the biotic transformations that dominated before deforestation

    A little more conversation, a little less action: Candidate roles for motor cortex in speech perception

    Get PDF
    The motor theory of speech perception assumes that activation of the motor system is essential in the perception of speech. However, deficits in speech perception and comprehension do not arise from damage that is restricted to the motor cortex, few functional imaging studies reveal activity in motor cortex during speech perception, and the motor cortex is strongly activated by many different sound categories. Here, we evaluate alternative roles for the motor cortex in spoken communication and suggest a specific role in sensorimotor processing in conversation. We argue that motor-cortex activation it is essential in joint speech, particularly for the timing of turn-taking

    Intraoperative Indocyanine Green Laser Angiography in Pediatric Autologous Ear Reconstruction.

    Get PDF
    Skin flap vascularity is a critical determinant of aesthetic results in autologous ear reconstruction. In this study, we investigate the use of intraoperative laser-assisted indocyanine green angiography (ICGA) as an adjunctive measure of skin flap vascularity in pediatric autologous ear reconstruction. Twenty-one consecutive pediatric patients undergoing first-stage autologous total ear reconstruction were retrospectively evaluated. The first 10 patients were treated traditionally (non-ICGA), and the latter 11 patients were evaluated with ICGA intraoperatively after implantation of the cartilage construct and administration of suction. Relative and absolute perfusion units in the form of contour maps were generated. Statistical analyses were performed using independent sample Student t test. Statistically significant differences in exposure and infection were not found between the 2 groups. However, decreased numbers of surgical revisions were required in cases with ICGA versus without ICGA (P = 0.03), suggesting that greater certainty in skin flap perfusion correlated with a reduction in revision surgeries. In cases of exposure, we found an average lowest absolute perfusion unit of 14.3, whereas cases without exposure had an average of 26.1 (P = 0.02), thereby defining objective parameters for utilizing ICGA data in tailoring surgical decision making for this special population of patients. Defined quantitative parameters for utilizing ICGA in evaluating skin flap vascularity may be a useful adjunctive technique in pediatric autologous ear reconstruction

    The Extended Methanol Maser Emission in W51

    Full text link
    The European VLBI Network (EVN) has been used to make phase referenced, wide-field (several arcminute) spectral line observations of the 6.7-GHz methanol maser emission towards W51. In the W51main region, the bulk of the methanol is offset from an UCHII region. This probably indicates the methanol emission arises at the interface of the expanding UCHII region and not from an edge-on circumstellar disc, as previously suggested. Near the W51 IRS2 region, the methanol emission is associated with a very compact, extremely embedded source supporting the hypothesis that methanol masers trace the earliest stages of massive star formation. As well as these two previously well studied sites of star formation, many previously unknown regions star formation are detected, demonstrating that methanol masers are powerful means of detection young massive stars.Comment: 5 pages, 3 figure

    Research Synthesis

    Get PDF
    Herbert Simon’s (1956) concept of satisficing provides an intuitive explanation for the reasons why respondents to surveys sometimes adopt response strategies that can lead to a reduction in data quality. As such, the concept rapidly gained popularity among researchers after it was first introduced to the field of survey methodology by Krosnick and Alwin (1987), and it has become a widely cited buzzword linked to different forms of response error. In this article, we present the findings of a systematic review involving a content analysis of journal articles published in English-language journals between 1987 and 2015 that have drawn on the satisficing concept to evaluate survey data quality. Based on extensive searches of online databases, and an initial screening exercise to apply the study’s inclusion criteria, 141 relevant articles were identified. Guided by the theory of survey satisficing described by Krosnick (1991), the methodological features of the shortlisted articles were coded, including the indicators of satisficing analyzed, the main predictors of satisficing, and the presence of main or interaction effects on the prevalence of satisficing involving indicators of task difficulty, respondent ability, and respondent motivation. Our analysis sheds light on potential differences in the extent to which satisficing theory holds for different types of response error, and highlights a number of avenues for future research

    Robust Online Monitoring of Signal Temporal Logic

    Full text link
    Signal Temporal Logic (STL) is a formalism used to rigorously specify requirements of cyberphysical systems (CPS), i.e., systems mixing digital or discrete components in interaction with a continuous environment or analog com- ponents. STL is naturally equipped with a quantitative semantics which can be used for various purposes: from assessing the robustness of a specification to guiding searches over the input and parameter space with the goal of falsifying the given property over system behaviors. Algorithms have been proposed and implemented for offline computation of such quantitative semantics, but only few methods exist for an online setting, where one would want to monitor the satisfaction of a formula during simulation. In this paper, we formalize a semantics for robust online monitoring of partial traces, i.e., traces for which there might not be enough data to decide the Boolean satisfaction (and to compute its quantitative counterpart). We propose an efficient algorithm to compute it and demonstrate its usage on two large scale real-world case studies coming from the automotive domain and from CPS education in a Massively Open Online Course (MOOC) setting. We show that savings in computationally expensive simulations far outweigh any overheads incurred by an online approach

    Inferior frontal gyrus activation predicts individual differences in perceptual learning of cochlear-implant simulations

    Get PDF
    This study investigated the neural plasticity associated with perceptual learning of a cochlear implant (CI) simulation. Normal-hearing listeners were trained with vocoded and spectrally-shifted speech simulating a CI while cortical responses were measured with fMRI. A condition in which the vocoded speech was spectrally inverted provided a control for learnability and adaptation. Behavioral measures showed considerable individual variability both in the ability to learn to understand the degraded speech, and in phonological working memory capacity. Neurally, left-lateralized regions in superior temporal sulcus and inferior frontal gyrus (IFG) were sensitive to the learnability of the simulations, but only the activity in prefrontal cortex correlated with inter-individual variation in intelligibility scores and phonological working memory. A region in left angular gyrus (AG) showed an activation pattern that reflected learning over the course of the experiment, and co-variation of activity in AG and IFG was modulated by the learnability of the stimuli. These results suggest that variation in listeners' ability to adjust to vocoded and spectrally-shifted speech is partly reflected in differences in the recruitment of higher-level language processes in prefrontal cortex, and that this variability may further depend on functional links between the left inferior frontal gyrus and angular gyrus. Differences in the engagement of left inferior prefrontal cortex, and its co-variation with posterior parietal areas, may thus underlie some of the variation in speech perception skills that have been observed in clinical populations of CI users
    • …
    corecore